반응형
정렬을 할때에는 여러 알고리즘을 적용할 수 있습니다. 알고리즘의 성능은 일반적으로 데이터의 크기에 따라 결정됩니다. 따라서 데이터 크기에 따라 가장 효과적인 정렬 방법을 예시 코드와 함께 정리해 보겠습니다
작은 크기의 데이터 (수십 개 이하)
- 버블 정렬, 삽입 정렬이나 선택 정렬과 같은 간단한 알고리즘들이 효과적일 수 있습니다.
버블 정렬
public class BubbleSort {
public static void main(String[] args) {
int[] array = {64, 34, 25, 12, 22, 11, 90};
bubbleSort(array);
System.out.println("Sorted array: " + Arrays.toString(array));
}
static void bubbleSort(int[] arr) {
int n = arr.length;
for (int i = 0; i < n - 1; i++) {
for (int j = 0; j < n - i - 1; j++) {
if (arr[j] > arr[j + 1]) {
int temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
}
}
}
}
}
삽입 정렬
public class InsertionSort {
public static void main(String[] args) {
int[] array = {64, 34, 25, 12, 22, 11, 90};
insertionSort(array);
System.out.println("Sorted array: " + Arrays.toString(array));
}
static void insertionSort(int[] arr) {
int n = arr.length;
for (int i = 1; i < n; ++i) {
int key = arr[i];
int j = i - 1;
while (j >= 0 && arr[j] > key) {
arr[j + 1] = arr[j];
j = j - 1;
}
arr[j + 1] = key;
}
}
}
중간 크기의 데이터 (수백 개 이하)
- 퀵 정렬이나 병합 정렬이 빠르게 동작할 수 있습니다.
퀵 정렬
public class QuickSort {
public static void main(String[] args) {
int[] array = {64, 34, 25, 12, 22, 11, 90};
quickSort(array, 0, array.length - 1);
System.out.println("Sorted array: " + Arrays.toString(array));
}
static void quickSort(int[] arr, int low, int high) {
if (low < high) {
int pi = partition(arr, low, high);
quickSort(arr, low, pi - 1);
quickSort(arr, pi + 1, high);
}
}
static int partition(int[] arr, int low, int high) {
int pivot = arr[high];
int i = (low - 1);
for (int j = low; j < high; j++) {
if (arr[j] < pivot) {
i++;
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
}
int temp = arr[i + 1];
arr[i + 1] = arr[high];
arr[high] = temp;
return i + 1;
}
}
병합 정렬
import java.util.Arrays;
public class MergeSort {
public static void main(String[] args) {
int[] array = {64, 34, 25, 12, 22, 11, 90};
mergeSort(array);
System.out.println("Sorted array: " + Arrays.toString(array));
}
static void mergeSort(int[] arr) {
if (arr.length > 1) {
int mid = arr.length / 2;
int[] left = Arrays.copyOfRange(arr, 0, mid);
int[] right = Arrays.copyOfRange(arr, mid, arr.length);
mergeSort(left);
mergeSort(right);
merge(arr, left, right);
}
}
static void merge(int[] arr, int[] left, int[] right) {
int i = 0, j = 0, k = 0;
while (i < left.length && j < right.length) {
if (left[i] <= right[j]) {
arr[k++] = left[i++];
} else {
arr[k++] = right[j++];
}
}
while (i < left.length) {
arr[k++] = left[i++];
}
while (j < right.length) {
arr[k++] = right[j++];
}
}
}
큰 크기의 데이터 (수천 개 이상)
- 퀵 정렬이나 힙 정렬이 일반적으로 효과적입니다.
- 퀵 정렬은 대부분의 상황에서 빠르게 동작하며, 힙 정렬은 안정적인 성능을 제공하면서 추가 메모리 사용을 최소화합니다.
힙 정렬
import java.util.Arrays;
public class HeapSort {
public static void main(String[] args) {
int[] array = {64, 34, 25, 12, 22, 11, 90};
heapSort(array);
System.out.println("Sorted array: " + Arrays.toString(array));
}
static void heapSort(int[] arr) {
int n = arr.length;
for (int i = n / 2 - 1; i >= 0; i--) {
heapify(arr, n, i);
}
for (int i = n - 1; i >= 0; i--) {
int temp = arr[0];
arr[0] = arr[i];
arr[i] = temp;
heapify(arr, i, 0);
}
}
static void heapify(int[] arr, int n, int i) {
int largest = i;
int left = 2 * i + 1;
int right = 2 * i + 2;
if (left < n && arr[left] > arr[largest]) {
largest = left;
}
if (right < n && arr[right] > arr[largest]) {
largest = right;
}
if (largest != i) {
int swap = arr[i];
arr[i] = arr[largest];
arr[largest] = swap;
heapify(arr, n, largest);
}
}
}
반응형
'알고리즘' 카테고리의 다른 글
[프로그래머스] 가장 큰 수 #정렬 (1) | 2024.02.16 |
---|---|
[프로그래머스] 숫자 변환하기 #bfs #level2 #java (1) | 2024.02.01 |
로또는 확률로 계산이 가능할까? (0) | 2023.01.06 |
[백준]소수찾기_1978 #에라토스테네스의 체 #Sieve of Eratosthenes #JAVA (0) | 2022.06.02 |
[백준] 스택수열_1874번 (0) | 2022.05.24 |